Draft

Characteristics and Attributes that affect S/MIME Product Interoperability

Authors

Jerry Mulvenna(Larry Keys(
Dale Walters(
Srinivas Ganta(
Sarbari Gupta(
(Affiliation: National Institute of Standards and Technology, Gaithersburg, MD

(Affiliation: CygnaCom Solutions, Inc., McLean, VA

Characteristics and Attributes that affect S/MIME Product Interoperability

Abstract

S/MIME is based upon the popular MIME standard, and describes a protocol for adding cryptographic security services through MIME encapsulation of digitally signed and encrypted objects. The S/MIME specification was designed to promote interoperable secure electronic mail. However, because the specification allows multiple interpretations and implementations, and is sometimes silent about key aspects that affect interoperability, a number of “S/MIME Enabled” products are available on the market that are incapable of fully interacting with one another. In this paper, we present a set of characteristics that affect the interoperability profile for a given S/MIME application, and illustrate how they may be used to achieve a higher level of interoperability within the family of S/MIME compliant products.

1 Introduction

S/MIME (Secure / Multipurpose Internet Mail Extensions) is a specification for securing electronic mail. S/MIME is based upon the popular MIME standard, and describes a protocol for adding cryptographic security services through MIME encapsulation of digitally signed and encrypted objects. The exact security services offered by S/MIME are authentication, non-repudiation, message integrity, and message privacy.

The S/MIME specification was designed to promote interoperable secure electronic mail, such that two compliant implementations would be able to communicate securely with one another. However, because the specification allows multiple interpretations and implementations, and is sometimes silent about key aspects that affect interoperability, what has resulted is the availability of multiple S/MIME compliant commercial products that are not capable of fully interoperating with one another with respect to secure messaging.

The National Institute of Standards and Technology (NIST)- Information Technology Laboratory- Security Division has established a laboratory in which interoperability experiments using commercial-off-the-shelf (COTS) S/MIME-compliant products from different vendors has been conducted. The experiments were designed to test the interoperability between peer S/MIME applications, between S/MIME applications and Certification Authority products, and between S/MIME applications and Directories.

All of the S/MIME implementations tested have been awarded the “S/MIME Enabled” seal based upon compliance tests conducted by RSA Labs. [Appendix A lists the actual products that were used in the tests.] Yet, there were a large number of scenarios, where interoperability between the implementations was either limited or unachievable. From the test results, we concluded that there are a number of characteristics or properties that affect the interoperability of a given S/MIME application with other S/MIME applications, Certification Authority products and Directory products. These characteristics are neither part of the S/MIME specifications, nor do they appear in the S/MIME compliance testing methodology adopted by RSA.

In this paper, we discuss these characteristics and illustrate how they affect the interoperability profile for a given S/MIME application. Interoperability is the prime concern of users of S/MIME implementations. Awareness of these characteristics may help to fine tune the S/MIME specifications to support a greater level of interoperability. They may also help the developers of S/MIME applications to make design decisions that would further the cause of interoperability. Additionally, these characteristics may help individuals who are procuring S/MIME applications to differentiate between the available implementations and select the one that most closely meets their interoperability needs. Finally, although these characteristics were derived from tests conducted upon S/MIME implementations, they may be applied to any end-user security application that requires a public key infrastructure.

The rest of this paper is organized as follows. Section 2 describes the necessary background including the evolution and current status of the S/MIME specification. Section 3 describes a categorized set of characteristics that impact the ability of an S/MIME implementation to interoperate with other implementations. Section 4 discusses how the findings in this paper can be used to attain a higher level of awareness about the potential bottlenecks to interoperability. Finally, our conclusions are presented in Section 5.

2 Background

2.1 Evolution of the S/MIME Standard

In the early 1980's, the Internet Engineering Task Force (IETF) developed Request for Comment (RFC) 822, which became the specification that defined the standard format of electronic mail messages. This specification and RFC 821, which defined the mail transfer protocol, were the foundations upon which the Simple Mail Transfer Protocol (SMTP) was based. SMTP was designed to carry textual messages over the Internet.

The Multipurpose Internet Mail Extension (MIME) was also developed by the IETF, and was designed to support non-textual data (such as graphics data or video data) as the content of an Internet message. The MIME specification adds structured information to the message body which allows it to contain non-textual information. However, MIME does not provide any security services.

Additional structure was imposed on the MIME message body to provide an encryption and digital signature service as part of the S/MIME specification. Version 2 of the S/MIME specification has been submitted to the IETF by the vendors for standardization. This version requires that RSA public key technology be used to encrypt the data encrypting key. The IETF is expected to modify the existing specification to allow additional digital signature and key exchange algorithms. The vendors, however, are not waiting for the IETF to complete the standardization process; they are developing S/MIME applications based on the current version of the S/MIME specification.

2.2 S/MIME Version 2

The S/MIME specification uses data structures that conform to Public Key Cryptographic Standard (PKCS) #7. PKCS #7 is a cryptographic message syntax that is designed to specify the content and form of the information that is required in order to provide an encryption and digital signature service.

Public key technology is essential for incorporating digital signature and encryption services into an e-mail application. A message digest is signed with the private key of the message originator. When the signature is verified by the message recipient using the message originator’s public key, it authenticates the message originator and signifies that the message has not been altered during transmission. The symmetric key that is used to encrypt the message is encrypted with the public key of each of the recipients and can be decrypted only by the corresponding private key.

S/MIME implementations support several different symmetric content encryption algorithms. The RC2 algorithm with a key size of 40 bits is supported, even though it provides weak encryption, in order to comply with U.S. export regulations. In addition, in most S/MIME implementations, the user can choose DES, Triple DES or RC2 with a key size greater than 40 as the content encryption algorithm. The user can normally select either SHA-1 or MD5 as the message digest algorithm; the receiver’s application must be able to process both algorithms. The sender’s system must use the RSA public key algorithm with a key size ranging from 512 to 1024 bits to sign a message digest or to encrypt the content encrypting key. The receiver’s system must use the same algorithms to verify a message signature and to decrypt the key that has been used to decrypt the message content.

A Certification Authority (CA) issues certificates that bind the identity of a public key to a user. This binding is only as strong as the out-of-band verification that the CA performs before issuing the certificate. Since many CAs can issue certificates, there must be a method of establishing trust among CAs so that each user can trust the information in a certificate issued by a CA other than his own. After the public certificate is issued, there must be a method by which the certificate is made available to other users. The certificate must be in a standard format so that the information in the certificate can be processed by applications built by different vendors.

Deployment of S/MIME secure e-mail implementations requires a supporting Public Key Infrastructure (PKI) to provide solutions for the issues listed above. In some cases, standards have already been developed and implemented to provide this infrastructure. There is agreement that the certificate format will conform to Version 3 of the International Telecommunications Union (ITU) x.509 Recommendations. There is agreement that the Lightweight Directory Access Protocol (LDAP) is the protocol that will be used to access the directories that function as certificate repositories. PKCS#10 specifies the format for a request for a CA to issue a certificate.

2.3 S/MIME Compliance Tests from RSA

S/MIME products are being developed to interoperate with the products of different vendors. When they purchase an S/MIME product, users want to know that they can exchange signed and encrypted messages with any other S/MIME user. RSA Data Security has set up an S/MIME Interoperability Center that allows vendors to perform interoperability testing on their products and to have the results published.

The RSA Interoperability Test Center was established in 1997. Participating vendors test against WorldTalk’s WorldSecure Client which is the designated reference implementation. All vendors participating in the testing use Verisign’s Class 1 public key certificates. The vendor first sends a signed message containing a public key certificate to the reference implementation and receives two signed and encrypted messages in return. One message uses RC2 as the content encryption algorithm; the second message uses Triple-DES for content encryption. Both messages contain a secret phrase. The vendor decrypts the messages, extracts the secret phrases and includes them in the messages sent back to the reference implementation, using the same content encryption algorithm. If the reference implementation can recover the secret phrases, the successful test results will be posted on the S/MIME Interoperability Test Center Web Page (www.rsa.com/smime). As of January 1999, more than 20 different S/MIME products have been successfully tested. [Appendix B lists the products that have been awarded the S/MIME compliance seal by RSA Labs.]

The testing, while providing useful information is limited in scope. It doesn’t test the ability of an S/MIME implementation to interact with a certificate repository in order to publish or obtain a public key certificate. It doesn’t test the ability to process certificates issued by different Certification Authorities or the ability to process Certification Revocation Lists. It also doesn’t follow that, because the implementations test successfully with the reference implementation, they will successfully test with each other.

2.4 Current Status of Interoperability of S/MIME products

For example, some products only support web-based registration for certificate requests, while others support an email-based registration process. This results in a strict subsetting of the Certification Authorities that a given S/MIME product can interact with to request certificates. Another glaring problem is the inconsistent support of the opaque signature format within the S/MIME Version 2 specification. Although compliant receiving agents must be able to parse opaque signed messages, compliant sending agents are not required to be able to generate opaque signed messages. Thus, there is no baseline requirement for signature format support that allows every compliant S/MIME product to be able to exchange signed messages successfully with every other S/MIME implementation.

3 Interoperability Characteristics

This section describes characteristics and properties that are pertinent to the ability of an S/MIME implementation to interoperate with peer implementations, Certificate Authorities, and Repositories. The properties are categorized into sets that affect a particular area of operation of a specific implementation.

3.1 Certificate Handling

This section describes characteristics related to the management and use of certificates within an S/MIME implementation.

3.1.1 Managing Certificates for Local User

The local user is the human entity that controls an S/MIME application to send and receive secure email with its peer entities.

3.1.1.1 Distinct Signing and Encryption Certificates for Local User

The S/MIME Version 2 specification calls for the use of a single certificate for signing outgoing email as well as receiving incoming encrypted email. Most currently available S/MIME implementations, thus, support a single certificate for the local user running the S/MIME application. S/MIME Version 3, however, supports the use of separate certificates for signatures and encryption, and a small set of S/MIME implementations implement this two-certificate scheme.

An S/MIME application that only supports a single certificate for encryption and signatures may be unable to communicate securely with a peer that supports a dual certificate scheme. For example, a typical S/MIME implementation will try to use the certificate used to validate a signed message from a peer to send encrypted message to that peer entity. However, if the peer happens to be a dual-certificate-based implementation, it will reject the incoming encrypted message since it will not be able to use its own encryption certificate to decrypt the message. Thus, single certificate implementations provide the greatest level of interoperability in the current S/MIME version 2 space of products. If dual-certificate implementations are used, it is recommended that users identify the same certificate as the signature as well as the encryption certificate.

3.1.1.2 Self-Signed Certificate Support for Local User

The use of the security features of S/MIME within a group of peer entities is predicated upon the availability of a PKI that allows an entity within the group to establish trust in the public key certificates of every other entity within the group. However, the deployment of large-scale public key infrastructures has been neither easy nor widespread. In the absence of a PKI, certain trust models allow a small group of peers to trust one another implicitly. This is typically achieved by exchanging certificates via some secure means and trusting peer certificates implicitly, as opposed to trusting them via certificate path validation to a trusted anchor or root certificate.

A subset of the S/MIME implementations that are currently available support the use of an implicit trust model using self-signed certificates. Thus, the local user running the S/MIME application is able to use a self-signed certificate for themselves. Self-signed certificates accompanying incoming signed messages from peers can be implicitly trusted and used to send encrypted messages to the peer entity. Other S/MIME implementations do not allow the use of self-signed certificates either for the local user or their peers. To allow rapid deployment of S/MIME in an environment where PKI path-based trust cannot be established, it is preferable to use S/MIME implementations that support an implicit trust model.

3.1.1.3 Single / Multiple Certificates for Local user

Some S/MIME applications have the capability to support multiple certificates for the local user. This allows the local user to belong to multiple PKI hierarchies simultaneously, selecting the certificate to use when interacting with a particular peer. For example, user A belong to infrastructures X and Y and has certificates Kx and Ky from infrastructures X and Y respectively. Entity B belongs to infrastructure X and can only validate certificates in X; entity C belongs to infrastructure Y and can only validate certificates within Y. When interacting with B, A selects certificate Kx. Likewise, A selects certificate Ky when interacting with C. Support for multiple certificates for the local user is thus a very desirable attribute in an S/MIME application.

3.1.1.4 Ability to Import PKCS #12 Credentials for Local user

PKCS (Public Key Cryptography Standards) #12 is a de-facto standard from RSA Laboratories for securely packaging credentials (public and private key pairs) for transport or storage. S/MIME version 2 calls for the use of PKCS#12 credentials for import into S/MIME applications, if necessary.

Typically, S/MIME applications have built-in or companion modules that generate key pairs, and are able to dispatch certificate requests to Certification Authorities using the newly generated public key. In such cases, the ability to import PKCS#12 objects is not necessary. However, there are two situations where it becomes important for an S/MIME application to import PKCS#12 objects. In the first situation, a Certification Authority may require that key pair generation is done locally for every certificate issued by it; a PKCS#12 object is then sent back to the S/MIME user for import into the S/MIME application. In the second case, a key pair and certificate may be held within an external module (such as a browser,) and the user may be interested in importing the same set of credentials for use within the S/MIME application.

The ability of an S/MIME implementation to import and use PKCS#12 objects thus affects its interoperability with CAs and the ability to share digital credentials with other PKI-based applications.

3.1.2 Managing Peer Certificates

3.1.2.1 Self-Signed Peer Certificate Support

The ability to support an implicit trust model using self-signed certificates from peers allows an S/MIME application to be fit for quick deployment in communities where a pervasive PKI is either lacking or See Section 3.1.1.2 for more details.

3.1.2.2 Acquiring Certificates for Peers

Peer certificates are acquired by S/MIME applications in any of the following three ways:

1) Extracting certificates from incoming signed messages from peers

2) Loading certificates from *.p7c files

3) Lookup of peer certificates from a LDAP Repository

The lack of support for one or more of the above may hinder an S/MIME application from obtaining certificates for peer users and therefore being able to communicate securely with them. For example, if an S/MIME client application only has the capability to extract certificates from signed messages, then it cannot interact with a peer S/MIME application that does not send certificates along with a signed message.

3.1.2.3 Support for Selective Trust of Peer Certificates

Occasionally, peer certificates that are acquired (through any of the mechanisms discussed in the last section) cannot be validated using any of the known trusted root keys embedded within the S/MIME application. In such cases, it is very useful if the S/MIME application provides the local user the ability to selectively trust peer certificates that have been acquired. Once the local user designates the peer certificate as trusted, secure, encrypted email can be sent to that peer.

3.1.3 Managing Root Certificates

Every S/MIME implementation comes preloaded with a set of root certificates, all or a subset of which may be designated as trusted. These trusted root certificates are used to validate the certificates of peers. This section describes some attributes that affect the management of root certificates.

3.1.3.1 Acquiring Certificates for Roots

Root certificates may be acquired via the same three ways (mentioned in Section 3.1.2.2) used to acquire peer certificates. Support for various means of acquiring root certificates for use within an S/MIME application allows it to use additional roots to establish trust in peer certificates. Conversely, lack of support for one or more of these ways, may disallow import of a particular root certificate, and prevent interoperability with a peer that is certified by that root authority.

3.1.3.2 Selectively Trusting Root Certificates

Having acquired or imported additional root certificates into an S/MIME application, it is very useful to have the ability to selectively trust one or all of the newly imported root certificates. Thus, if the local user is given the opportunity to designate newly imported roots as trusted, it may allow the local user to establish trust in all certificates issued by these additional trusted roots. Conversely, if additional trusted roots cannot be established within an S/MIME application, it may be impossible to communicate with a large set of potential peers.

3.2 Interaction with Certificate Authorities

S/MIME users need to obtain certificates signed by Certification Authorities (CA) to communicate securely with peers. The only exception is when self-signed certificates are used within a small well-known community to establish implicit trust in peers. Most S/MIME applications have associated modules or software tools that allow the generation of a key pair on behalf of the local user, and the construction and dispatch of a certification request to a CA. The certificate request message is based upon the PKCS#10 format as specified in the S/MIME Version 2 specification.

3.2.1 Support for Multiple Mechanisms for Requesting Certificates from CAs

Certification Authorities or their delegates support one or more of the following transport mechanisms for incoming certification requests, and distribution of issued certificates:

1. Web: The User’s Web Browser connects to the CA’s website to dispatch certification requests, or to collect an issued certificate.

2. Email: The User sends an email to the CA’s email address with the certification request. The CA may send an email back to the User with the issued certificate.

3. In-Person/Floppy/Smart Card: The User places the certification request on a floppy or similar physical medium and transports it to the CA or its delegate. The CA or its delegate may return the issued certificate on a floppy or other medium (such as a smart card) for import and use by the User’s application.

S/MIME applications that support all of the above mechanisms for interaction with a CA are able to request and receive certificates from the majority of CA products. Non-support of one or more of the above could imply that the S/MIME application cannot interoperate with certain classes of CA products.

3.3 Interaction with Repositories

Certificate distribution in a small community may be achieved by users exchanging certificates with one another. However, the S/MIME Version 2 specification calls for the use of LDAP (Lightweight Directory Access Protocol) to interface with directories/repositories to obtain certificates and revocation information for users.

3.3.1 Publishing local user certificate

Typically, the CA that issues a certificate is responsible for publishing it in a repository. However, some S/MIME implementations also have the ability to publish the local user’s certificate in a chosen directory. This feature is very useful in a domain where peers obtain each other’s certificate from an organizational directory. Publication in the Directory makes the user’s certificate readily available to a large community of peers, and thus promotes interoperability.

3.3.2 Peer Certificate Lookup

When an S/MIME application supports the lookup of LDAP-based Directories for peer certificates, it gives the local user access to a large set of potential peer certificates, and the ability to interact with these peers.

3.4 Signing Outgoing Messages

This section describes various issues involved during signing of messages that may determine its level of interoperability.

3.4.1 Support for Opaque/Clear Signed Message Formats

S/MIME Version 2 provides for two data signing formats. In the “clear” format, the signature is separated from the signed data and is sent as an attachment. There is both an advantage and a disadvantage in using this data signing format. The advantage is that the recipient can always read the message even if the recipient’s e-mail application is not an S/MIME client and the signature cannot be verified. The disadvantage is that the message may undergo some format conversion as it transits a mail gateway that is not S/MIME- aware. This will cause the receiving S/MIME application to invalidate the signature.

This can be corrected by binding the signature with the message in a single binary file. The resulting format is labeled the “opaque” format. No conversion will be performed by a mail gateway on the binary file and the message can be verified by an S/MIME application that serves the recipient. However, because the message text is wrapped in a binary file, the recipient cannot read it if the recipient’s e-mail application is not an S/MIME client.

The existence of two possible signing formats has led to some difficulties in S/MIME interoperability. Some applications sign in “clear” format, some sign in “opaque format; others give the user a choice. The applications that support both formats for outgoing signed messages are guaranteed to be able to transmit to every other S/MIME application.

3.4.2 Support for Multiple Algorithms and Key Size

All currently available S/MIME implementations use RSA for signatures; the keys that are used vary between sizes 512/768/1024/2048. The hashing algorithm used within the signature could be SHA-1 or MD5. Some S/MIME applications support only a subset of the above algorithms for incoming signed messages. In order for two S/MIME implementations to exchange signed messages, they must support a common set of algorithms and key sizes. Thus the implementations that support both hash algorithms and various RSA moduli, and allow the local user to select the algorithms to use for specific outgoing signed messages enable the greatest level of interoperability with other S/MIME implementations.

3.5 Validating Incoming Signed Messages

3.5.1 Support for Opaque/Clear Signed Message Formats

Support for both signed message formats for validating incoming signed messages provides the highest level of interoperability with other S/MIME implementations that may support only one of the formats for outgoing signed messages. See Section 3.4.1 for further details.

3.5.2 Support for Multiple Algorithm Choices and Key Size

Support for multiple hash algorithms and various moduli for the RSA signature keys for validating incoming signed messages promotes interoperability with a large number of sending clients. See Section 3.4.2 for further details.

3.5.3 X.509v3 Certificate Path Validation

S/MIME Version 2 specifies the use of X.509v3 certificate path validation mechanisms for S/MIME implementations; support for this type of path validation allows an S/MIME application to parse complex certificate chains to establish trust in peer certificates. All S/MIME applications that we have tested have the capacity to validate flat certification hierarchies, namely, the CA issues certificates to S/MIME users in a one level deep hierarchy. However, many implementations do not support the validation of certificates that are part of a multiple level hierarchy. In order to interoperate with the largest possible set of peers (some of which may send out signed messages with certificate chains that are part of a multiple level hierarchy), it is very useful if an S/MIME implementation supports fully compliant X.509v3 path validation.

3.6 Encrypting Outgoing Messages

In S/MIME, Version 2, an encrypted message is constructed as follows: a random symmetric key is used to encrypt the message, and the recipient’s public key is used to wrap the symmetric key for key transfer purposes. On the recipient’s side, the corresponding private key is used to unwrap the symmetric decryption key, and the latter is used to decrypt the message.

3.6.1 Support for Multiple Algorithm Choices and Key Size

The S/MIME Version 2 specification allows the use of various symmetric algorithms and key sizes for message encryption, and various RSA moduli for key exchange. Currently, S/MIME applications support one or more of the symmetric encryption algorithms, DES, Triple DES and RC2, with various key sizes. In order for an encrypted message to be passed between two S/MIME applications, both sides must support the same encryption algorithm and key size, and the same modulus for RSA key exchange. Some implementations support only a single algorithm and key size for encryption, or a single modulus for RSA keys. The implementations that support all or a large subset of the available algorithms provide the greatest level of interoperability with peer implementations with a limited set of algorithms.

3.7 Decrypting Incoming Messages

3.7.1 Selection of Certificate for decryption

When the local user possesses more than one certificate, and receives an encrypted S/MIME message, the correct certificate and private key needs to be a selected to decrypt the message. Some implementations leave the selection of the appropriate private key (from the set of available private keys) to the user. Others allow a transparent selection of the appropriate private key for decryption; this is very useful feature in environments where users routinely possess certificates from multiple public key infrastructures, and use them for communicating with peers from disparate trust domains.

3.7.2 Support for Multiple Algorithms and Key Size

See Section 3.6.1.

4 Usefulness of the Interoperability Characteristics/Attributes

The characteristics and properties outlined in this paper provide us with a greater insight into the issues that affect the interoperability of a S/MIME implementation in a real-world scenario. Ideally, the S/MIME specification should be capable of addressing each of these issues and setting minimum requirements to allow a base level of interoperability between all compliant implementations. Understanding the intricacies of the various choices that can be made within the scope of the S/MIME Version 2 specification, may help to fine tune the S/MIME specifications themselves.

Understanding the characteristics that affect interoperability also helps vendors of S/MIME products understand the implications of the implementation and design choices they make for their products. Knowledge of these characteristics is also important to the community of S/MIME product users and procurers. Users who are aware of their own environments with respect to the deployment of PKI products will be able to make an informed decision about which subset of the characteristics presented in this paper are relevant to their interoperability needs. Having defined their idealized profile for S/MIME products, they can then evaluate the available implementations from the various vendors and select the one that scores highest in the evaluation based upon their customized needs.

The characteristics described in this paper were derived through a study of the S/MIME specification and experimentation with S/MIME implementations. However, we believe that a large subset of these characteristics are also applicable to most other public key infrastructure based secure communication protocols, and their implementations. The lessons learned through the study of S/MIME should be easily transferable to other similar domains.

5 Conclusions

In this paper, we have described a number of important properties that affect the ability of an S/MIME implementation to interoperate with its peer implementations. However, there are other issues that also affect the suitability of an implementation within a particular environment.

The usability characteristics of an implementation goes a long way to promote the usage of the product. If secure email products provide daunting user interfaces, they will not be widely. One obvious recommendation to heightened user friendliness would be to transparently support the digital certificates of peers within the address book mechanisms provided by the basic email package. Thus, when a signed message comes in, the local user can add the sender to their local address book and thereby transparently add the sender’s certificate to the address book entry. Conversely, when sending out encrypted email, the local address book could be used to select the receiver and transparently select the receiver’s certificate (if present as part of the address book entry.)

Most current implementations also have little or no support for revocation checking of certificates. As public key infrastructures become widely deployed, the very real management problems such as certificate revocation need to be handled within the applications using the infrastructure.

In conclusion, we would like to point out that it is heartening to see the widespread adoption of the S/MIME secure electronic mail standard, and the availability of commercial products based upon the standard. Despite the fact that public key infrastructure technology is still in its infancy, and the standards are continuously evolving, the S/MIME vendors are making considerable progress in resolving the existing barriers to interoperability. In the near future, users will find that security services will be integrated into most e-mail applications.

References

[PKCS7]

[SMIMEv2]

[RFC822]

[RFC821]

[PKCS10]

Appendix A

Baltimore Technologies MailSecure Exchange Plug-in Version 2.1

WorldTalk WorldSecure Eudora Plug-in

WorldTalk WorldSecure Exchange Plug-in

Netscape Messenger Version 4.04

Microsoft Outlook Express

Appendix B

[From RSA’s S/MIME Web page]

