
APPLYING THE TCSEC GUIDELINES TO A

REAL-TIME EMBEDDED SYSTEM ENVIRONMENT
�

Jim Alves-Foss, Deborah Frincke and Gene Saghi

Laboratory for Applied Logic

Department of Computer Science

University of Idaho

Moscow, ID 83844-1010

Abstract

The DoD Trusted Computer System Evaluation Criteria (TCSEC) was developed to provide a com-

mon yardstick for evaluating system security, a guide for system developers, and as a procurement

standard. Since these guidelines were released, it has become important to consider the security

of systems other than the traditional operating systems that in
uenced the TCSEC. Multilevel data

security is required of many modern advanced, real-time embedded systems. In this paper, we dis-

cuss real-time embedded systems such as those found in avionics systems and how the TCSEC's

requirements may be modi�ed to suit such systems.

Introduction

The DoD Trusted Computer System Evaluation Criteria (TCSEC) [1] was developed to provide

a common yardstick for evaluating system security, as a guide for system developers, and as a

procurement standard. However, since then it has become important to consider the security of

systems other than the traditional operating systems that in
uenced the TCSEC's development.

Modern real-time systems used in all types of manufacturing lines may require security. As these

systems become more and more integrated and as the amount of data sharing increases, security and

validation will become increasingly important. Industrial spying is becoming a very serious problem

in some industries.

Real-time systems are becoming quite complex, and may handle sensitive tasks. The F-22 avion-

ics system features a high-performance, shared-memory, heterogeneous multiprocessor connected to

sensors and instrumentation by high-bandwidth �ber-optic interconnects. The F-22 operating system

supports dynamic assignment of tasks to processing assets (data processors and signal processors).

The Boeing 777 has over 2.6 million lines of code in the avionics and cabin-entertainment system.

The heart of the system, Airplane Information Management System (AIMS) built by Honeywell Air

�The research was funded in part from a grant by Texas Instruments.



Transport Systems Inc., handles 
ight management, cockpit displays, and central maintenance, and

modules share processors, memory system, and operating system. Software for AIMS alone is over

600,000 lines of code [10].

One de�nition of a secure system requires that it protect the information it stores from unauthorized

release or modi�cation. The Multilevel Security Policy (MLS) as described in the TCSEC (for B1

and above) associates security levels with subjects (e.g., program, user) and objects (e.g., data sets,

memory), and requires that the contents of objects can only be seen by a subject at its level or lower;

that is, information can 
ow to the same or higher levels but never to lower levels. This mandatory

security policy is augmented by a discretionary policy that further restricts information on a need-

to-know basis. More abstract and general models of security that avoid the need to consider objects

have been formulated by Goguen and Meseguer [4, 5], Fiertag, Levitt and Robinson [2], McCullough

[8, 9] and McClean [6, 7]. In these models, the information a subject observes is dependent on the

actions of subjects at the same level or lower. That is, the actions of higher-level subjects cannot be

observed by lower-level subjects.

In a computer system the burden of security usually falls mostly on the operating system. An

operating system that satis�es the MLS policy must enforce access control; it must not permit

processes to have access to objects in violation of the security policy. In addition, the operating

system itself must not be a channel for the communication of information not in accordance with

the security policy. Such unwanted information 
ow can potentially occur through objects managed

by the operating system and shared by more than one subject, or through timed performance of

actions on shared resources. The term covert channel is often used in referring to such objects.

There have been successful attempts to develop systems that implement the MLS policy, mostly

for single host/multiple user systems such as mainframes or shared workstations. Regardless of

the policy or model used to develop the system, there is the requirement to provide assurance that

the implementation satis�es that model. The TCSEC speci�es the types of assurance required to

meet various levels of security certi�cation. The assurance may consist of informal arguments, test

documentation, formal models and descriptions and formal veri�cation.

Background

Distributed and Real-Time Systems

For purposes of this paper, a distributed system is considered to consist of hosts (e.g., control sys-

tems, data acquisition systems, data analysis, and user interfaces), servers (e.g., repositories for

objects accessible to multiple hosts, such as �les, directories, names, data sets, shared memory), and

a network through which the hosts and servers communicate. Security is especially important for

distributed systems since such systems often have hosts and servers with di�erent security classi�ca-

tions and certi�cation levels, some with no access control (untrusted) and others that are multi-level

secure (MLS). This is especially true of an open-system architecture with components supplied from

di�erent vendors.

Architectures for MLS distributed systems vary according to the services o�ered by the system. In

a simple case, each host can support a single user or, more generally, several users operating at the

same level. Here the burden of assuring security can fall on the network, which can mediate all

communication between hosts to ensure only those intended to communicate with each other do so.

[11] Indeed, since users are permitted to communicate only through a few well-de�ned interfaces,



it is easier to show compliance with the security policy for this distributed system than for most

common multiuser mainframes. A more general distributed system would support multilevel hosts.

Some of these systems permit the sharing of services or hosts across the system, perhaps through

process migration. Here, one must prove the hosts secure in addition to requiring trusted interhost

services.

The focus of this paper speci�cally involves distributed real-time embedded syducing the overhead

required for maintaining system security. For the purposes of this paper, a real-time system is one

which provides mechanisms to ensure that executing system tasks will meet speci�c performance

and deadline criteria. An embedded system is one which is used speci�cally to monitor and control

attached peripherals (in our example, the peripheral are sensor and weapons systems on a �ghter

aircraft). Such an embedded real-time system has a very limited user interface and can not be

considered a general-purpose multi-user system. The addition of security features to such systems is

often seen as an added processing burden that is unrealizable in a real-time system (or at least cost

prohibitive). The paper identi�es those aspects of the TCSEC which are not absolutely necessary

for such systems, thereby reducing the overhead required for maintaining system security.

The TCSEC Guidelines

The TCSEC provides metrics against which systems can be evaluated, guidance for system develop-

ment, and procurement guidelines. These guidelines specify both system properties and assurance

requirements. The system properties are speci�c to a system con�guration and are geared for a

multi-user general purpose operating system. The assurance requirements are required for any type

of system, regardless of operational environment or design.

The TCSEC's four divisions of certi�cation are lettered A to D, where division A is the highest

classi�cation and division D is the lowest. Division D, or minimal protection systems have been

evaluated but fail to meet requirements of a higher classi�cation. Division C systems have provi-

sions for discretionary access control (protection under the user's control) and audit. Division B

systems additionally provide mandatory access control, or must implement mandatory restrictions

on information 
ow between di�erent security levels. The more restrictive subdivisions in this divi-

sion require a formal statement of the security policy, documentation of the system design, testing

to assure that the design is consistent with the speci�cation, analysis of covert storage and timing

channels, and permit only security relevant code in the reference monitor1. Finally, Division A or

veri�ed protection systems have the same functionality as required for B3 systems, and developers

must provide additional assurance that the system design correctly re
ects the speci�cation and im-

plements the security policy. Assurance is gained through the use of formal design speci�cations and

formal veri�cation of these speci�cations.

Within each division of certi�cation is a set of requirements, which specify behavior, design and oper-

ation of the computing system. Requirements are divided into one of four categories: security policy,

accountability, assurance, and documentation. The security policy provides guidelines for the eval-

uation of discretionary access controls, object reuse, labeling, import and export of labeled objects,

and mandatory access controls. Accountability provides guidelines for the evaluation of identi�cation

and authentication mechanisms, auditing, and trusted path access. Assurance provides guidelines

for the evaluation of the system life cycle including system design, testing, analysis, management

and maintenance. Documentation provides guidelines for the evaluation of the system documenta-

1The TCSEC document de�nes a reference monitor as a system task that manages all references and validates

them according to the security policy.



inertial

EW/ESM

CNI

RADAR

EO/FLIR/IRST

core
processor

integrated

missile warning

sensor preprocessors

aperatures

pilot

mass

memory

displays

data links

weapons
storage

management

flight controls

sensors

Figure 1: Block diagram of an avionics system.

tion, both from the user and management perspective as well as from the design and maintenance

perspective.

Security Guidelines in a Real-Time Environment

The TCSEC was designed for evaluating multi-user, multi-level (for levels B1 and greater), general-

purpose computing systems. Certain real-time embedded systems di�er enough from these traditional

systems to such an extent that many of the original TCSEC standards do not apply. We present

aspects of real-time systems which a�ect the applicability of the TCSEC guidelines, emphasizing

category B3, which incorporates all lower level functionality and di�ers from A1 only in the amount

of assurance required. In the following subsections, we discuss a real-time embedded avionics system,

enumerate di�erences between traditional TCSEC systems and our target real-time system, and

analyze aspects of the TCSEC guidelines as they apply to real-time embedded avionics systems. Our

discussion is summarized in Table 1.

An Avionics Real-Time Embedded Computer System

Modern real-time computer systems are migrating from purely proprietary architectures to open

system architectures. It was once thought that only proprietary architectures could be validated for

use in a secure environment, because commercial o�-the-shelf components could not be considered

trusted. However, Rushby & Randell [11] and Stoneburner & Snow [12] have shown that untrusted,

single-level systems can be incorporated into a multi-level distributed system (such as may be found in

a real-time computer system), and the result can still be validated. Thus, an open system architecture

is a viable alternative to wholly proprietary systems even in a secure computing environment.

A high-level block diagram of an avionics system is shown in Figure 1. An expanded view of the

integrated processor is shown in Figure 2a, while Figure 2b depicts one possible implementation of

one of the integrated processor's signal processors. To reduce the size and weight of the avionics

system, to reduce the number of unique processor designs, and to provide increased fault tolerance,

the data processors and signal processors are interchangeable and assigned to tasks dynamically.

In Figure 1, assume that one of the data links operates at a lower security level than the RADAR

subsystem. Both may utilize di�erent data processors or signal processors (see Figure 2) at the same



SRAM SRAM SRAM SRAM

DSP DSP DSP DSP

signal processor

switched data network

DP DP DP SP SP

SP SP SP SPDP

I/F

other system resources

mass memory,

preprocessors,

DP DRAM network I/F

8-port xbar switch

high-speed data networkcontrol network

(a) (b)

control network
DP - data processor
SP -

Figure 2: Block diagram of (a) an integrated processor and (b) a signal processor.

time, passing information across the data and control networks at di�erent security levels. They may

even use the same data processors or signal processors at di�erent times. The data processors and

signal processors must be capable of operating at various security levels and there must be safeguards

built into the hardware and software that prohibit access to secure data by tasks that are not cleared

for access to that data, whether that data exists in network messages or in processor memory as the

result of a previous task. Potentially, the four digital signal processors (DSPs) shown in Figure 2b

operate at di�erent security levels simultaneously.

Important Di�erences

Traditional system contain users and user-created objects, including �les and processes running on

behalf of the user. In contrast, the core processing elements of real-time embedded systems typically

consist of a static set of well-de�ned processes and processing elements. Without such a well-de�ned

set it is hard to ensure the required real-time performance constraints of the system. Similarly, it

is unlikely that the users of the system (if any) will dynamically create new processes or objects

(such as �les). Although real-time systems may involve dynamic execution, resource allocation and

scheduling, the possible behaviors of the system are constrained to a well de�ned set of processes

with speci�c limits on numbers and classes of each created object. A properly maintained embedded

system will not have users downloading software from the Internet to execute on the system, or

creating new data �les with discretionary access controls. Instead, users can often be viewed as

direct extensions of the computer system or considered to be separate subsystems executing at a

single authorization level. Their interface to the system is through a speci�c physical interface,

accessed through physical authentication controls (a pilot may not supply a password to start the

aircraft, but needs to pass an armed guard instead).

Processes should be part of a well-de�ned static set rather than created dynamically (i.e., not installed

or newly compiled by users). Although the run-time behavior of these processes and associated

resource allocations may be input driven, normally the relationship between processes and associated

protection levels is predetermined and �xed. Thus, information 
ow and protection controls between

processes can be statically de�ned. This eliminates the need for a discretionary access control policy

and permits all access control to be managed by a mandatory policy.

The environment in which a given system operates a�ects the guidelines which are pertinent to its



evaluation. We make the following assumptions about this environment: (1) Every individual in a

position to observe human-readable output (such as that provided by gauges and data records) will

be cleared at the appropriate level. (2) The system will not be vulnerable to physical tampering

(although may be vulnerable to hardware damage or failure).

TCSEC Guidelines that should be modi�ed

Because of the limited nature of the real-time embedded systems we are examining, some of the

TCSEC guidelines are irrelevant or less important.

Discretionary access control We believe that traditional discretionary access control will not

be a particularly useful tool in many real-time embedded systems for several reasons:

� Subjects in traditional TCSEC systems generally consist of human users, computers or other

mechanical systems, and processes. In a real-time embedded system, we have well-de�ned

processes with well-de�ned roles. Thus, we expect that if we were to associate sensitivity

labels these processes such labels would never change and would be known in advance

� Traditional TCSEC systems expect objects to be created dynamically, and the number and

ownership/sensitivity of these objects is not expected to be known in advance. This is one

of the reasons that discretionary access controls are a useful tool. However, in a real-time

embedded system, we can assume that all objects that will ever exist are present or planned

at its inception. In addition, the role that each object plays in the system will be known

in advance. The major justi�cation for such assumptions lies in the need for precise timing

between real-time system components. In order to assure properly timed interactions between

components, it will be necessary to know all types of interactions in advance.

Because of the prior knowledge outlined above, we believe that mandatory access controls will be

su�cient (and preferable) for de�ning information 
ow permissions between subjects and objects,

that these relationships will not need to change dynamically, and hence discretionary access controls

will be unnecessary.

Identi�cation andAuthentication Identi�cation and Authenticationwill not be importantwithin

our real-time embedded systems. Since we are assuming the system is invulnerable to physical tam-

pering, the only processes that exist will be those that are included by the developer. This does, of

course, presuppose that, if we are using multi-vendor components, we can trust those components not

to introduce intrusive processes. One caveat is that we may need identi�cation and authentication

between components of real-time systems in some situations. For example, if the avionics system is

receiving targeting or mapping information from an external source, it will be important to have

some assurance that the incoming information is trustworthy. However, there should not be any

intruders in the usual sense.



TCSEC Guidelines that might require modi�cation

Subject Sensitivity Labels If subjects are de�ned as human users, then subject sensitivity labels

may not be necessary, since we are not expecting more than one category of subject to interact with

the system during normal operation (the pilot). However, if it would be useful to have categories of

subject (such as maintenance, pilot, co-pilot), then subject sensitivity labels will be useful. Also, if

processes are considered subjects, these labels will be needed as well.

Trusted Path If we are assuming no human users and no physical breach of the system, then there

ought not be any possible tampering of information between components. However, this may not be

true if we have untrusted vendor components within the system itself.

Audit Audit should probably be included for purposes of maintenance and performance checks,

and possibly for validating the actions of outside vendor components. However, if we do not expect

to have distinguishable human users and do not expect intrusive processes, we will not need audit

records that are aimed at identifying misuse from these sources. The real-time system must still

maintain an audit trail of accesses to the objects it protects. Read access to the audit data is limited

by physical means. The variety of events that must be recorded is reduced for a real-time embedded

system because of the lack of dynamically created objects.

TCSEC Guidelines that should remain unchanged

Reuse The complex avionics systems now being developed usually rely on reuse of objects such as

memory and processors for e�cient operation. Thus, criteria providing guidelines for object reuse

will still apply.

Labels, Label Integrity, Device Labels, Exportation Since mandatory access controls will

probably still be needed, subject and object labels (and label maintenance) will still be needed. If

our real-time system includes multi-vendor components (as seems likely), then it will be particularly

important to continue to address the issue of labeling devices and passing labeled objects between

devices.

Assurance, Documentation These categories of the guidelines are system independent. They

provide a mechanism to ensure that reasonable e�ort was made throughout the system life-cycle to

provide correct implementation and operation of the system with respect to the security policy and

accountability guidelines. Although the amount of documentation, testing, and veri�cation involved

may vary between systems, these requirements must be met for all systems to be evaluated.

Conclusion and Ongoing Work

When compiling a review of TCSEC categories we found that some of the standard TCSEC guidelines

were not applicable to a real-time embedded computer system. This discovery led to the review



Table 1: Evaluation Criteria Summary for Real-Time System

Criteria Appropriate for Real-Time Comments

Security Policy
Discretionary Access Control No Substitute MAC

Object Reuse Yes Memory, processors shared.

Labels, Label Integrity Yes Needed for MAC.

Exportation of Labeled Information Yes Vendor-supplied

components along common bus

Exportation to Multi/Single-level Devices Yes \"

Labeling Human Readable Output Yes Flight data recorders, printouts.

Mandatory Access Control Yes Prede�ned relationships.

Subject Sensitivity Labels Probably Not Subjects are de�ned

as human users

Device Labels Yes Proprietary and vendor-supplied.

Accountability
Identi�cation and Authentication None or Limited Assumption 2; also,

components untrusted, subjects cannot

create processes, hence objects

will be statically identi�able

Audit Limited Functionality/performance checks,

covert channel detection.

Trusted Path None or Limited Unnecessary if no human users;

Assurance
System Architecture, Integrity Yes

Security Testing Yes

Design Speci�cation and Veri�cation Yes

Covert Channel Analysis Yes

Trusted Facility, Con�g Management Yes

Trusted Recovery Yes

Documentation

Security Feature User's Guide Yes

Trusted Facility Manual Yes

Test, Design Documentation Yes

of major TCSEC categories and their applicability to real-time embedded computer systems as

presented in this paper. In summary this review points out that certain of the TCSEC guidelines,

such as discretionary access control, user authentication, and export labels may be trivially satis�es

or not even implemented in a real-time system. Although the claims in the review are generic, we

are currently evaluating concrete examples to demonstrate the application of the TCSEC guidelines

to speci�c instances of real-time systems. The work presented in this paper is just the �rst phase

of a larger project that involves the analysis and interpretation of security guidelines for real-time

embedded computer systems. We are working on the following related projects:

Formal Speci�cation and Veri�cation of Real-Time Systems. This project involves the use of formal

speci�cation and veri�cation techniques for the security analysis of real-time systems. Currently we

are investigating the analysis and speci�cation of a real-time embedded avionics control system. The

system involves a collection of processing units (potentially o�-the-shelf) connected through a shared

bus (as depicted in Figures 1 and 2). The paper [3] presents details of a high-level formal speci�cation

of the system, including information 
ow protection.



Formal Mapping of the TCSEC Guidelines to Real-Time Systems. We are currently involved in

a project, which is a direct extension of this paper, to provide a mechanism for formally mapping

the TCSEC guidelines to real-time systems. Although this project initially involves the avionics

system discussed above, we plan to extend that work to other real-time control and manufacturing

environments.

References

[1] Department Of Defense Computer Security Center. Department of Defense Trusted Computer

System Evaluation Criteria, August 1983.

[2] R. J Fiertag, K. Levitt, and L. Robinson. Proving multilevel security of a system design. In

Proc. Symposium on Operating System Principles, pages 57{95, 1977.

[3] J. Alves-Foss, G. Saghi, D. Frincke and S. Ghantasala. Multilevel data security for real-time,

embedded computer systems: A case study. In Third AMAST Workshop on Real-Time Systems;

Models, Properties and Control, March 1996.

[4] J.A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symposium

on Security and Privacy, pages 11{20, 1982.

[5] J.A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE Symposium on

Security and Privacy, pages 75{86, 1984.

[6] J. McClean. Security models and information 
ow. In Proc. IEEE Symposium on Security and

Privacy, pages 180{187, 1990.

[7] J. McClean. A general theory of composition for trace sets closed under selective interleaving

functions. In Proc. IEEE Symposium on Security and Privacy, pages 79{93, 1994.

[8] D. McCullough. Foundations of Ulysses: The theory of security. Technical Report RADC-TR-

87-222, Odyssey Research Associates, Inc., July 1988.

[9] D. McCullough. Noninterference and the composability of security properties. In Proc. IEEE

Symposium on Security and Privacy, pages 177{187, 1988.

[10] G. Norris. Boeing's seventh wonder. IEEE Spectrum, 32(10):20{23, October 1995.

[11] J. Rushby and B. Randell. A distributed secure system. IEEE Computer, 16(7):55{67, 1983.

[12] G.R. Stoneburner and D.A. Snow. The Boeing MLS LAN: Headed towards an INFOSEC

security solution. In Proceedings of the 12th National Computer Security Conference, pages

254{266, October 1989.


